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1, Introduction,
In a recent paper Kerr and Schild [1] have considered the
1)

solution of the vacuum field equations Rp = 0, for a space~time

with metric tensor 8ab of the form

Bab © Map + kakb ¢

Here Nab is the metric of Minkowski space in coordinates which
are cartesian, but not necessarily rectangular, and ka is a null
vector field; gabkakb = 0, The contravariant components of the

metric tensor take the simple form
ab ab b
g = 0 - k% R

where k% = gabkb; consequently ka is also a null vector of the
flat space—~time. An important result for the above space-times is
that thev are algebraically special in the sense of the Pirani-Petrov

clagssification.




1) By space-time we will mean a four—dimensional Riemannian space
of signature +2, Quantities in space-time will be defined as in:
Riemannian Geometry by L. P. Eisenhart (Princeton University Press).
4+ Supported in part by the National Aeronautics and Space Adminis-

tration under grant Ns G-416, University of Pittsburgh,

More generally, given an arbitrary space-time YV, with
metric tensor §ab’ and a null vector field ka, then we can consider

the tensor

(1.1 Bap = éab + kakb i

as the metric tensor of a related space-time V,. In this note the
relationship of Vy to 64 is considered and a generalisation of
the above result concerning the Petrov type of V,, when V, 1is a

flat space~time, is given,

ab .ab
2., Preliminary Results., Let g and g denote the contravariant
-~ ab
metric tensors of V, and V, respectively., The tensor S is

defined by:

ab ab .ab

Hence

ab ~ab ab_ . a
8 Bpe = (8 + 5 J(gpe + kpke) = 8 ¢

which reduces to




(2.1) (§abkb + Sabkb)kc + sabibc = 0.

The contraction of this equation with K = §Cdkd, and the assump-

tion that k_ is a null vector field of 94 gives

abe~

S Zbe

~cd ab
g kd = S kb = 0,
From (2.1) we see that

R

and further

k2 = gabkb - Eabkb + Sabkb - i3 .
The contravarisnt form of (l.1l) is therefore
(2.2) gab - éab - Eaﬁb - éab - kakb ,

and ka is also a null vector field of Va.

The metric relations (1l.1) and (2,2) will imply a correspon-
dence between quantities in V4 and 54. In particular, there will
be relations between their respective affine connexions and curva-
ture tensors.

We will denote by ";" covariant differentiation with respect

to the connexion P;C of V,, and by "||" covariant differentiation

with respect to f:c the connexion of 34. A simple calculatjion
gives
a ~a ~ad a
- = k + + k
2.3) Ty =The = 8 Cgkpg)ley * Kkpa| ) * ¥ Kplle) * *ple))
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where k(al[b) and k[allb] denote the symmetric and antisymmetric

parts of kallb' and Q. = kc]]dkd' We note also that
(2.4 I‘:Ckb = f:ckb + ;adk(ch)

2.5 rtamka = f‘:cka - k(ch) ’

(2.6) I‘gckbkc = F:Ckbkc ,

and

(2.7) re. = To. .

It follows therefore that

d d -C c
(2.8) 9. = kc[!dk = kc;dk

.o
L
L]
[¥=]
.

From equations (2.4)-(2.7) we deduce the following theorem.

Theorem 2.1, The expansion [2] of the null vector field k k6 1is

invariant under the transformation ¥, V, given by (1.1). Fur-

ther if k, 1is a geodesic vector field of ¥,, then it is also

geodesic in V4’ and the shear and rotation [2] of ka are also

invariant,

Proof.

WYe have the relation

d ~d
kal|b = kapp*t (Tapka = Tapka) »
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5
which with (2.5) implies
and
H b
(2.10) e LI L C R
h ion § of is defined by § = + k=
The expansion ¢ o ka in Va s define y © 5 ||a'
From (2.7) or (2.9) we have
1 'a = l a =
and the first part of the theorem follows.
Tor the shear g and the rotation gy of k, in ﬁa we
have
.2 al|b <2 al|b ~2
Now from (2.10)
al|b _ . ajb _[ab]
K(a| 0¥ (k(azp) = KaTp)) 7~k a)
a3b ab - ‘a;b 21 b
k(a;p)k k(a;pyk 9 = Kaspy* 2 49 ¢
Ve have already that ® = @ and therefore
~2 azgb _ 2 1 b 2 _1 b

Similarly from (2.9) we have for the rotatioms

(2.12) 25" = 200 - -;-q qp -




’

The condition for k, to define a geodesic congruence in 54 is
Qa = Akgs and from (2,8) this is invariant under 94 V4e The

second part of the theorem now follows from (2.11) and (2.12).
3. The Generaligation of the Kerr~-Schild Result. An elementary
calculation gives the result

b ~ ab b
(3.1) Rykk = Rk + qq
from which follows

Theorem 30 1 .

£ §4 and V4 are vacuum svace—-times then ka necessarily

defines a null congruence of geodesics in both 54 and V,.

Proof,
From (3.1) qbqb = O, and also from the definition of Qs
k q, = O. Since space-time is of signature +2, no two real null

vectors can be orthogonal unless one is a nultiple of the other.

Therefore we must have
= k kb = k .k a Ak
9a al|b a3b ’

and the congruences defined by k, are necessarily geodesic.

Theorem 3.2.

N N e = N D A Gan A A A N O N o o =
.

£ 64 and V, .are vacuum gpace-times and 64 is algebraically

special in the Pirani-Petrov classification with k, as a double root
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of its Debever equation, then V, Ais necessarily algebraically

special with k_  as a double root of its Debever equationm.

Proof.
TR

The Goldberg-Sachs theorem [3] implies that ka is a
geodesic and shear—free congruence of 54. The conditions of the
theorem ensure that both these properties hold also for the congruence
defined in V4 by ka. Hence by the Goldberg=-Sachs theorem V4
is algebraically special with ka as a double root of its Debever

equation,

The conditions on 94 can be considerably weakened and yet
preserve the result for the special Einstein space Ve In fact
if it is assumed that ka defines a geodesic and shear-free con-
gruence in 54, (34 is not necessarily algebraically special) then
it follows that it also defines a geodesic and shear-free congruence
in V4, and hence from the Goldberg—Sachs theorem V4 is algebraically

special,
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